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Summary 
 
When preparing a saccade, attentional resources are focused at the saccade target and its immediate vicinity. 
Here we show that this does not hold true when saccades are prepared towards a recently extinguished target. 
We obtained detailed maps of orientation sensitivity when participants prepared a saccade toward a target that 
either remained on the screen or disappeared before the eyes moved. We found that attention was mainly 
focused at the immediate surround of the visible target and increasingly spread to more peripheral locations 
as a function of delay between the target’s disappearance and the saccade increased. Interestingly, this spread 
was accompanied by an overall increase in sensitivity speaking against a dilution of limited resources over a 
larger spatial area. We hypothesize that these results reflect the behavioral consequence of the spatiotemporal 
dynamics of visual receptive fields in the presence and in the absence a structured visual cue. 
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Introduction 
 
 To efficiently make sense of our rich visual environment, the visual system evolved and gained the ability 
to selectively process the most salient information (Itti & Koch, 2001). This selection is, however, limited by the 
architecture of the visual system itself (Anton-Erxleben & Carrasco, 2013). To compensate for the low visual 
resolution in peripheral vision, selection can either be achieved by shifting high resolution central vision to 
peripheral objects of interest by means of saccades (overt attention), or by shifting spatial attention while keeping 
the eyes steady (covert attention). Saccades are preceded by a shift of attention toward the saccade target (e.g. 
Armstrong & Moore, 2007; Deubel & Schneider, 1996; Moore & Fallah, 2004) suggesting that both overt and covert 
attention rely on similar processes (Awh, Armstrong, & Moore, 2006; Rizzolatti, Riggio, & Sheliga, 1994). Indeed, 
both cases result in the deployment of attention resources, leading to spatially localized gains in reaction time (e.g. 
Posner, 1980; Remington, 1980), in visual sensitivity (e.g. Bashinski & Bacharach, 1980; Deubel & Schneider, 
1996) and in neural activity (e.g. Moran & Desimone, 1985; Wurtz & Mohler, 1976).  
 Moreover, it has been shown that neurons are particularly sensitive to stimuli presented in the direction of 
an attended target (saccade target or cue) located outside their classical receptive fields (Anton-Erxleben, 
Stephan, & Treue, 2009; Connor, Preddie, Gallant, & Van Essen, 1997; Moran & Desimone, 1985; Neupane, 
Guitton, & Pack, 2016; Niebergall, Khayat, Treue, & Martinez-Trujillo, 2011; Tolias et al., 2001; Womelsdorf, Anton-
Erxleben, & Treue, 2008; Womelsdorf, Anton-Erxleben, Pieper, & Treue, 2006; Zirnsak, Steinmetz, Noudoost, Xu, 
& Moore, 2014). Such attentional modulation of the visual neurons spatial tuning is accompanied by changes in 
their their receptive fields size and position, as observed in animal electrophysiology (Anton-Erxleben et al., 2009; 
Womelsdorf et al., 2006; 2008) and in humans, using functional imaging methods (Herrmann, Montaser-Kouhsari, 
Carrasco, & Heeger, 2010; Kay, Weiner, & Grill-Spector, 2015; Klein, Harvey, & Dumoulin, 2014; Sprague & 
Serences, 2013). The allocation of attention can then be modeled as a gaussian field of variable width, centered 
on the attended cue location,  modulating the spatial tuning of visual cells’ receptive fields located nearby 
(Reynolds & Heeger, 2009; Womelsdorf et al., 2008). Furthermore, the width of this gaussian field is thought to be 
essential, as it determines the type of attentional benefits observed (contrast gain vs. response gain) in visual 
sensitivity (Herrmann et al., 2010) and in neural activity (Carandini & Heeger, 2012; Reynolds & Heeger, 2009).  
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 Attention then certainly modulates visual cells’ receptive fields, but what are the consequences at the 
behavioral level of such modulation? If it is the presence of an attended target that drives the modulation of the 
visual cell’s receptive field tuning, what happens after its disappearance? To answer these questions we will first 
have to clarify how the spatial modulation of attention can actually be assessed behaviorally. Different authors 
have assessed the spatial spread of attentional benefits through measures of reaction time or visual sensitivity 
change at multiple location surrounding a cue. When testing covert attention during fixation attentional benefits 
were found at positions extending over the whole visual field tested (Tse, Sheinberg, & Logothetis, 2003), or at 
positions limited to one visual hemifield (Hughes & Zimba, 1985), to a visual quadrant (Hughes & Zimba, 1987) or 
to a few degrees surrounding the cue (Henderson & Macquistan, 1993; Shulman, Remington, & McLean, 1979; 
Shulman, Wilson, & Sheehy, 1985). These huge variations seem to primarily reflect methodological discrepancies, 
such as the use of exogenous or endogenous cues, and also variations in the task difficulty (Intriligator & 
Cavanagh, 2001). Indeed, by using a structured visual field (Eriksen & Yeh, 1985; Taylor, Chan, Bennett, & Pratt, 
2015), by increasing the difficulty of the tasks by masking the targets (Deubel & Schneider, 1996; Baldauf:2006hn; 
Doré-Mazars, Pouget, & Beauvillain, 2004; Handy, Kingstone, & Mangun, 1996; Henderson, 1991; Kowler, 
Anderson, Dosher, & Blaser, 1995), or by controlling for visual eccentricity effects (Koenig-Robert & VanRullen, 
2011), it was shown that the the attentional spread was narrowly concentrated, with benefits limited to a few visual 
angle surrounding a covertly attended cue or a saccade target. 
 Using a new visual sensitivity mapping paradigm inspired from the above work, we evaluated the spatial 
extent of attentional benefits before the execution of a saccade toward a cue. In particular, we evaluated the 
spatiotemporal dynamics of attention following the disappearance of the cue. We found that highest discrimination 
sensitivity was concentrated at the cue location and its immediate surrounds when the cue was visible. However, 
after the cue’s disappearance, benefits spread to more peripheral locations. This spread was accompanied by an 
overall increase in sensitivity and cannot be explained by a loss in spatial localization of the memorized location. 
As this spread of attention was made without any evidence of a trade-off of attentional resources (meaning it was 
not accomplished by spreading limited resources over a larger spatial area), our effects revealed a yet unknown 
consequence of attention field modulation. In particular they suggest that visual neuron’s receptive fields shift 
toward the visible cue, but when the cue is no longer visible, return to their initial coordinates, accompanied by a 
spatial spread of attention benefits without any attentional trade-off. 
 

 
Figure 1. Experimental procedure. A. Sustained cue condition. Participants prepared a saccade from the fixation target (FT) to a visual cue 
(CUE) presented continuously on the screen throughout the trial. Participants were instructed to saccade toward the center of the cue at the 
offset of the FT, which occurred between 700 and 1600 ms after the cue onset. Just before the saccade, a discrimination target was shown 
(DT, 25 ms clockwise or counter-clockwise tilted Gabor) together with 5 distractors (DIST, vertical Gabors) and followed by 6 overlaying masks 
(MASKS, 25 ms noise patches). B. Transient cue condition. Participant prepared a saccade from the FT to a CUE presented transiently (500 
ms). Participants saccade at the offset of the FT which occurred between 200 and 1100 ms after the cue offset. C. On each trial the position 
of the DT and of the distractors were randomly picked between 25 possible positions (black dots), homogeneously covering a 10° by 10° map 
centered on the CUE. D. Before the main saccade task, we determined at different eccentricities from the FT the necessary DT angle leading 
to a correct discrimination level of 80%. The graph shows averaged DT angle (n=12) interpolated across the different DT eccentricities from 
the FT (see Method). DT angle is shown via the color scale.  
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Results 
 

 
Figure 2. Pre-saccadic sensitivity maps. Each graphs shows average sensitivity across all participants (see Method) gathered either at 25 
positions individually (middle row) or grouped in 3 distances (Δ1, Δ2 and Δ3, bottom row) surrounding the saccade cue (CUE). The top row of 
each panel describe the time course relative to the saccade onset of the fixation target (FT), the cue (CUE), the discrimination target (DT) and 
the horizontal eye position (H. EYE). Data are shown for the sustained cue condition (A) and the transient cue conditions (B-D). The transient 
cue condition is binned in three equal groups of trials where the cue offset preceded the saccade onset by approximately 350 (B), 650 (C) or 
950 ms (D). Averaged sensitivity (d’) is shown via the color scale. 
 
 Our goal was to determine the spatial distribution of attentional benefits when participants prepared a 
saccade toward a cue that either remained on the screen, or had recently disappeared. To this end, we probed 
attention by presenting a discrimination target at one of various locations surrounding the cue (Figure 1). Through 
the use of a threshold task, we kept discrimination performance homogeneously high across space despite the 
fact that discrimination targets appeared at several eccentricities from the fixation target (see experimental 
procedure and Figure 1D). Then, to study the spatio-temporal dynamics of attention following the disappearance 
of the cue, we systematically varied the delay between the initiation of the saccade and the disappearance of the 
cue. 
 We first verified that the presentation of the discrimination target itself did not systematically influence 
oculomotor behavior. We did not find any differences with respect to saccade latency when comparing trials with 
and without the presentation of a discrimination target (4% of trials were without discrimination target, present: 
201.77 ± 2.84 ms vs. absent: 199.96 ± 7.12 ms, p = 0.1726) and only a slight change in saccade amplitude 
(present: 9.67 ± 0.17° vs. absent: 9.77 ± 0.40°, p < 0.0366), therefore validating our procedure. We next obtained 
maps of visual sensitivity, reflecting participants ability to correctly report the orientation of the discrimination target 
presented at different distances from the cue. Figure 2 shows sensitivity maps obtained across participant by 
presenting discrimination targets just before the saccade at 25 different positions (see Figure 1C), for trials in 
which the cue remained on the screen (Figure 2A) and trials in which it disappeared between 200 ms and 1100 
ms before the saccade (Figure 2B-D). Despite the limited amount of trials obtained per participants for each of the 
tested positions (40.76 ± 1.26 trials), the maps make it possible to appreciate the effects of the cue on the allocation 
of attention. Indeed, they show that attentional benefits were more pronounced toward the immediate contour of 
the cue and subsequently spread, more and more, as the delay between the saccade onset and the cue offset 
increased. These effects were systematically analyzed by combining the 25 tested positions into 3 groups of 
discrimination target distances from the cue (see Δ1, Δ2 and Δ3 in Figure 1C). Within the trials in which the cue 
remained on the screen (Figure 3A), performance was best for discrimination targets presented within ~2.4° 
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surrounding the cue (Δ1: d’ = 1.55 ± 0.18 vs. Δ2: d’ = 1.03 ± 0.15, p < 0.0001; Δ1 vs. Δ3: d’ = 0.92 ± 0.11, p < 
0.0001), with sensitivity at the immediate surround of the cue being approximately 63% higher compared to 
discrimination targets shown at further distances (Δ1/Δ2: 159.54 ± 14.65%, Δ1/Δ3: 170.97 ± 13.14%). These 
results are in line with previous evidence showing that the pre-saccadic shift of attention is limited toward the 
closest positions surrounding a saccade target (Deubel & Schneider, 1996). 
 

 
Figure 3. Statistics. A-D. Pre-saccadic sensitivity as a function of the distance from the cue center (Δ1-Δ3). Data are shown for the sustained 
cue (A) and the transient cue conditions (B-D). The transient cue condition is binned in three equal groups of trials where the cue offset precede 
the saccade by approximately 350 ms (B), 650 ms (C) or 950 ms (D). E-H. Pre-saccadic sensitivity as a function of the the duration between 
the cue offset and and saccade onset. Data are shown separately for three main distance of the DT from the CUE center (E-G) or for all trials 
irrespective of their distance from the cue (H). Note that overall sensitivity results (H) is not directly the mean of the sensitivity observed at the 
different distances from the cue (E-G) as there was not the same amount of trials played at each analyzed distance from the cue. Error bars 
show SEM, dashed and full lines represent non-significant (p > 0.05) and significant (p < 0.05) comparisons, respectively. 
 
 Next, we found a similar pattern of results when, rather than remaining continuously on the screen, the cue 
was extinguished approximately 350 ms before the saccade (Figure 3B-D). Within these trials we observed a 
similar distribution of pre-saccadic attention with best performance limited within the immediate contour of the cue 
(Δ1: d’ = 1.49 ± 0.16 vs. Δ2: d’ = 1.21 ± 0.17, p < 0.0406; Δ1 vs. Δ3: d’ = 1.09 ± 0.14, p < 0.0004) with an increase 
of sensitivity of approximately 42 and 46% when compared with performance at the two further distances 
respectively (Δ1/Δ2: 142.42 ± 22.43%, Δ1/Δ3: 146.49 ± 19.17%). These results seem to indicate that by itself, the 
offset of the cue had no significant influence on the allocation of attention before a saccade, at least within the first 
350 ms following its offset. Next, when the cue had disappeared from the screen approximately 650 ms before 
saccades start (Figure 3C), we found that targets were better discriminated if they were presented within the first 
distance from the cue (Δ1: d’ = 1.52 ± 0.14 vs. Δ2: d’ = 1.18 ± 0.12, p < 0.0008; Δ1 vs. Δ3: d’ = 1.13 ± 0.13, p < 
0.0002), with however a reduced spatial cueing effect (Δ1/Δ2: 137.98 ± 17.56%, Δ1/Δ3: 146.56 ± 13.83%). The 
trend toward an increasing spread of attention became evident when the cue had disappeared approximately 950 
ms before the saccade (Figure 3D). For these trials, the sensitivity difference between first and the second 
distances from the cue was no longer significantly (Δ1: d’ = 1.38 ± 0.16 vs. Δ2: d’ = 1.28 ± 0.13, p = 0.3608) and 
cueing effects between the first and the two other distances were strongly reduced (Δ1/Δ2: 108.03 ± 11.52%). 
Also, within these trials, performance for discrimination targets presented between ~3.3° and ~4.7° from the cue 
(Δ2) was now slightly better than for trials in which they were shown even further away (Δ3) from the cue (Δ2 vs. 
Δ3: d’ = 1.18 ± 0.14, p < 0.0484); an effect observed for trials in which the cue remained onscreen (p < 0.0186) 
but not for trials in which the cued disappeared less than approximately 950 ms before the saccade (all ps > 
0.4964). 
 The results above suggest that attention was, in general, drawn toward the cue and its close proximity, at 
least when it remained on the screen, or when it disappeared less than 950 ms before the saccade. To capture 
the time course of the attentional spread, we compared sensitivity gathered at each of discrimination target-to-cue 
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distances (Δ1-Δ3) in function of the delay between the saccade onset and the cue offset. We considered trials in 
which the cue remained on the screen as the shortest delay (t0, "t" corresponding to the cue offset to the saccade 
onset time). We found that sensitivity for discrimination targets shown at the cue’s immediate contour (Δ1) 
remained at a very similar level over the tested delays (0.8324 > ps > 0.1102, see dashed lines in Figure 3E). On 
the other hand, sensitivity for discrimination targets shown at positions more than 2.4° from the cue (Δ2 and Δ3) 
gradually improved as the time from cue offset increased (Figure 3F-H). In particular, we found a significant 
improvement of sensitivity for discrimination targets shown between ~3.3° and ~4.7° from the cue (Δ2, Figure 3F) 
when comparing trials where the cue remained on the screen to trials when the cue offset preceded the saccade 
by approximately 950 ms (t0: d’ = 1.03 ± 0.15 vs. t950: d’ = 1.28 ± 0.13, p < 0.0001), but not if this delay was 
shorter (i.e. t350 and t650: 0.1256 > ps > 0.1076). Such a spread of attention for discrimination target shown at 
the greatest tested distance from the cue (Δ3, Figure 3G) was visible even earlier in time (i.e. for shorter cue offset 
to the saccade). Significant differences were there, in fact, found in trials where the cue disappeared approximately 
350 ms (t0: d’ = 0.92 ± 0.11 vs. t350: d’ = 1.09 ± 0.14, p < 0.0098) and even earlier relative to the saccade onset 
(i.e. t650 and t950: both ps < 0.0001). Interestingly, when considering all discrimination target positions together 
(Figure 3H), we found that sensitivity increased as a function of the delay between the saccade onset and the cue 
offset. Overall sensitivity (computed as the average across the 25 possible positions of the discrimination target) 
increased by approximately 27% when comparing trials in which the cue disappeared about a second before the 
saccade to those in which the cue remained on the screen (t950/t0: 126.67 ± 10.62%). Furthermore, this increase 
of sensitivity was already significant when comparing trials where the cue remained on the screen with trials where 
the cue was extinguished approximately 350 ms before the saccade (t0: d’ = 1.07 ± 0.13 vs. t350: d’ = 1.19 ± 0.13, 
p < 0.0490) or even earlier (t0 vs. t650: d’ = 1.21 ± 0.12, p < 0.0022, t0 vs. t950: d’ = 1.25 ± 0.14, p < 0.0001).  
 Altogether, we observed that pre-saccadic attention was captured by the cue and maintained within its close 
proximity even one second after its disappearance. Moreover, the cue’s disappearance was quickly followed by 
an improvement of sensitivity at distances further away from it. Such benefits then cannot be explained by a trade-
off of attention resources between the closest and furthest distances from the cue. Rather our results suggest the 
existence a mechanism allowing a spread of attention over space without a significant loss at the closest positions 
surrounding the cue. 
 
 Can these results be explained by the fact that, after a rather long delay, participants lose track of the cue 
location? Because we investigated allocation of covert attention in a saccade task, our design allowed us to use 
saccade metrics to test this alternative explanation. First, we looked at whether the spread of attention was 
accompanied by a comparable spread of saccade endpoints. Figure 4A-D show the normalized saccade landing 
frequency for the different delays between the cue offset relative and the saccade onset. From these graphs, one 
can appreciate the absence of any strong difference in the frequency of saccade landing, which would be expected 
from the spread of attention observed above. The disappearance of the cue, nevertheless, had a clear influence 
on the saccades. In particular, we found that saccades were more accurate (accuracy assessed as the absolute 
distance between the saccade offset and the saccade target, t0: 1.24 ± 0.04° vs. t350-950: 1.47 ± 0.05°, p < 
0.0001) and more precise (precision assessed as the standard deviation of the accuracy, t0: 0.68 ± 0.02° vs. t350-
950: 0.80 ± 0.02°, p < 0.0001) when the cue remained on the screen compared to trials where it disappeared from 
the screen. We attributed the increased spread of saccade endpoints to the offset of the cue itself (Deubel, Wolf, 
& Hauske, 1982), and the lack of visual feedback just before saccade onset. In fact, contrary to what we found for 
attention, when the cue disappeared from the screen both saccade accuracy and precision didn’t change as a 
function of the delay between cue offset and saccade onset (0.5882 > ps > 0.1144). Next, using saccade endpoint 
coordinates we re-encoded the discrimination target positions in order to obtain sensitivity maps relative to the 
saccade endpoints, rather than relative to the cue position (Figure 4E-H). We hypothesized that if the spread of 
attention was due to a spread in saccade landing, then, by correcting the discrimination target coordinates for the 
saccade endpoints, the differences in sensitivity observed for different delays between cue offset and saccade 
onset should no longer be found, or at least be reduced. This was not the case. Instead, we found a very similar 
spread of attention as above, with sustained sensitivity over time observed at the immediate contour of the saccade 
endpoints (β1: 0.9776 > ps > 0.1782), and a similar spread of sensitivity across temporal delays for the other 
distances from the saccade endpoint. Also, as for the main analysis relative to the cue location, we found a 
significant improvement of sensitivity for discrimination targets shown between ~3.3° and ~4.7° from the saccade 
endpoint (β2) when comparing trials where the cue remained on the screen to trials where the cue offset preceded 
the saccade by approximately 950 ms (t0: d’ = 1.09 ± 0.13 vs. t950: d’ = 1.35 ± 0.14, p < 0.0044), but not if this 
delay was shorter (i.e. t350 and t650: 0.9776 > ps > 0.9410). Moreover, we found an earlier spread of attention 
for discrimination targets shown at the greatest tested distances from the saccade endpoint (β3), with significant 
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differences found for trials in which the cue disappeared approximately 350 ms (t0: d’ = 0.92 ± 0.12 vs. t350: d’ = 
1.12 ± 0.13, p < 0.0170) and after longer delays (i.e. t650 and t950: both 0.0080 > ps > 0.0001). This illustrates, a 
clear dissociation with the spread of saccadic endpoints not mirroring the spread of attention. 
 

 
Figure 4. Saccade endpoint maps and sensitivity maps relative to saccade endpoint. A-D. Normalized saccade landing frequency maps 
averaged across participants. Data are shown for the sustained cue (A) and the transient cue conditions where the cue offset preceded the 
saccade by approximately 350 ms (B), 650 ms (C) or 950 ms (D). E-H. Each graph shows average sensitivity grouped in 3 distance (β1, β2 
and β3) surrounding each trial saccade endpoint (SAC). Data are shown for the sustained cue (E) and the transient cue conditions for which 
the cue offset precede the saccade by approximately 350 ms (F), 650 ms (G) or 950 ms (H). Conventions are as in Figure 2. 
 
Discussion 
 
 We observed that when attention was allocated before an eye movement to a continuously present visual 
cue attentional resources remained bound to the cue location and its immediate surrounds (Δ1). Once the cue 
disappeared, we observed a spread of attention to more peripheral locations further away from the memorized 
target. This spread followed specific temporal dynamics. Notably, we found a modest although significant 
improvement in sensitivity at the farthest tested distance from the cue (Δ3) starting early after its offset. At a closer 
distance from the cue (Δ2), we observed a strong improvement in sensitivity beginning significantly later, about 
650 ms after the cue offset. Interestingly, the spread of attention was never accompanied by a significant reduction 
in sensitivity at the most central tested locations, close to the cue location (Δ1). Here performance was always 
found to be highest, irrespective of whether the cue remained visible or disappeared from the screen. In other 
words, we did not observe a trade-off of attentional resources, where an increased spread of attention lead to a 
dilution of attention resources. Instead, we found that sensitivity increased overall (across all tested position) as 
the delay between the saccade and the cue offset grew. Furthermore, although saccades were more accurate 
when the cue remained on the screen, the increased spread of attention could not be explained by a spread of 
saccadic eye movements towards the target location. Although saccade accuracy slightly decreased when 
saccades were executed toward a cue that was no longer present, the sensitivity maps remained the same even 
after we corrected the tested position by the trial-by-trial retinal error. This meant that changing the spatial 
reference of the sensitivity maps from the center of the cue to the actual saccade endpoint made no difference, 
saccade landing then having no influence on the spread of attention. Our findings suggest that the deployment of 
attention before eye movements depends on the presence of the visual cue, with a concentration of attentional 
resources confined within ~2.4° when the cue remained on the screen and an undifferentiated spread of attention 
within ~4.7° around a cue that has disappeared about a second before. Through the assessment of sensitivity 
maps, we were able to capture a yet undocumented mechanism at play when attention no longer relies on the 
presence of a visual cue: the spread of attentional resources without trade-off. 
 The extent to which an exogenous cue modulates the deployment of spatial attention has been investigated 
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previously, with outcomes mostly reflecting the difficulty of the task (Intriligator & Cavanagh, 2001). Our new 
paradigm allowed us to adjust the task difficulty to each participant and to control for visual eccentricity effects 
(Paradiso & Carney, 1988), two essential requirements for assessing visual sensitivity over space (Koenig-Robert 
& VanRullen, 2011). By combining a discrimination and a saccade task, we were able to verify through different 
saccade metrics that our measure of attention was not affected over space by the use of transient stimuli (Deubel, 
2008; Deubel & Schneider, 1996). Through the use of the distribution of saccade endpoints we were able to 
demonstrate that participants effectively kept track of the cued position at all the tested delays.  
 We observed that the modulation of attention was tightly limited to the intended saccade target and its 
immediate surrounds when the target remained on the screen, with highest sensitivity observed at roughly an 
equivalent distance (10% of saccade size) to that observed in previous reports (Deubel & Schneider, 1996). 
Although performance was better than chance at more peripheral positions from the cue, suggesting that attention 
was not only allocated to the saccade target (Castet, Jeanjean, Montagnini, Laugier, & Masson, 2006; Kowler et 
al., 1995; Montagnini & Castet, 2007), we attributed this effect to our adjustment procedure and to the use of 
transient discrimination targets. Indeed, to adjust the difficulty of the task, we employed a threshold procedure to 
determine for each participant the specific discrimination target angles necessary for each eccentricity. Moreover, 
to evaluate the deployment of attention in an unstructured visual field we had to use transient targets, known to 
capture by themselves attention (Müller & Rabbitt, 1989; Theeuwes, 1991). With such a protocol, performance 
was thus maintained artificially high across space, allowing us to make conclusions only on the modulation of 
covert attention at different positions, rather than about absolute attention capacities and attentional deployment. 
 While our findings perfectly match those of studies which have investigated the allocation of attention with 
continuously presented cue (Castet et al., 2006; Deubel, 2008; Deubel & Schneider, 1996; Kowler et al., 1995; Li, 
Barbot, & Carrasco, 2016; Montagnini & Castet, 2007; Rolfs & Carrasco, 2012; Rolfs, Jonikaitis, Deubel, & 
Cavanagh, 2011), to our knowledge, all studies investigating that aspect of attention used a structured visual field 
of visual placeholders. Despite using visual stimuli to measure attention we ensured these were presented only 
right before the saccades, at a time when the eye movements could no longer be stopped (Becker & Jürgens, 
1979; Hanes & Schall, 1995) and when attention had already been allocated at the saccade target (Castet et al., 
2006; Deubel, 2008; Klapetek, Jonikaitis, & Deubel, 2016; Li et al., 2016; Rolfs et al., 2011; Rolfs & Carrasco, 
2012). We therefore captured for the first time the allocation of pre-saccadic attention in an unstructured visual 
field and observed a clear spread of attention from the cue center to its periphery. We then found that contrary to 
the narrow allocation of presaccadic attention for a structured visual field, attention dynamically spread over space 
as a function as the cue offset to the saccade onset increased. These effects are in contrast to a recent report in 
which the disappearance of a briefly presented cue, during a fixation task, lead to slower reaction times in detecting 
the presence of a flashed target on a black screen in the absence of placeholders (Taylor et al., 2015). Contrary 
to these effects, we observed an overall increase in sensitivity after the disappearance of the target. In our view, 
this difference is principally due to the difficulty in drawing conclusions about the deployment of attention based 
on the use and of reaction times to supra-threshold stimuli (Handy et al., 1996). Indeed, with or without visual 
placeholders, reaction time benefits have been shown to cover entire visual quadrants or even entire visual 
hemifields (Bennett & Pratt, 2001; Hughes & Zimba, 1987; Taylor et al., 2015). These results are in contradiction 
with the tight allocation of attention to a saccade target, or to an exogenous cue, observed through changes in 
visual sensitivity (Deubel & Schneider, 1996; Handy et al., 1996) or through changes in firing rate for attended 
stimuli placed inside, rather than outside some visual and some movement receptive fields (Gregoriou, Gotts, & 
Desimone, 2012; Moran & Desimone, 1985; Wurtz & Mohler, 1976). 
 Contrary to the notion of attention being a limited resource, we showed here that following the cue’s 
disappearance of the cue, attention spread without any trade-off between the center and the surround of the cue. 
We propose that this effect reflects the spatiotemporal dynamics of a transition of the receptive fields’ positions 
from a modulated state in the direction of a visible attended cue to a disengaged state and a return to their default 
position when the cue disappear. Across several studies, it was shown that attention modulates the response of 
visual cells’ receptive fields by shifting their spatial tuning toward a position closer to an attended target, whether 
this was a visible cue (Anton-Erxleben et al., 2009; Connor et al., 1997; Kay et al., 2015; Klein et al., 2014; Moran 
& Desimone, 1985; Niebergall et al., 2011; Sprague & Serences, 2013; Womelsdorf et al., 2006; 2008) or a visible 
saccade target (Neupane et al., 2016; Tolias et al., 2001; Zirnsak et al., 2014). But if receptive fields’ tuning can 
migrate toward a visible cue, or can respond to stimuli presented at locations outside their classical receptive field, 
what happens when this cue then disappears? Once that happens, should the receptive fields not also be capable 
of returning to their resting-state position? Here, we hypothesize that following the cue’s offset, the receptive fields’ 
transition, back to their resting-state position, may result in a behavioral spread of attention toward more peripheral 
locations. It does not seem plausible that this dynamic change should occur instantaneously, and it may depend 
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on the distance between the resting-state receptive field position and the attention field center. While 
electrophysiological evidence will be required to verify this hypothesis, the aforementioned interpretation embodies 
our beliefs for two principal reasons. First, a link was recently demonstrated between the cells’ receptive field 
spatial tuning and sensitivity employing a variety of attention tasks, for example, motion stimuli in animals 
(Niebergall et al., 2011) and faces stimuli in humans (Kay et al., 2015; see also Sprague, Saproo, & Serences, 
2015). The change in sensitivity measured over time in our task could thus reflect changes in neurons’ receptive 
field positions. Second, different studies have demonstrated strong connectivity between oculomotor and feature 
maps preceding the execution of a saccade (Gregoriou et al., 2012; Gregoriou, Gotts, Zhou, & Desimone, 2009; 
Moore & Armstrong, 2003). We propose that at the onset of the cue, both oculomotor cells (e.g. within the Frontal 
Eye Fields or the Superior Colliculus) and cells sensitive to visual features (e.g. within the primary visual cortex) 
shifted their tuning function toward the cue. At the cue offset, through sustained firing rate during the saccade 
delay (Gregoriou et al., 2012), oculomotor cells accurately maintain the spatial position of the cue. Just before the 
saccade, these oculomotor cells may send top-down signals to their retinotopically corresponding cells encoding 
visual features of the scene (Moore & Armstrong, 2003). Contrary to the oculomotor cells, these cells are principally 
driven by the presence of the cue. After its disappearance, they should therefore return to their resting-state 
position. Such transition between a modulated and a resting-state position may then drive our behavioural effect, 
where we observed an increase of sensitivity for discrimination targets shown at position further away from the 
cue. We thus describe here a new mechanism of attention, which matches our experimental observations and 
predicts a spread of attention without an important trade-off of attentional resource between the attended location 
and its surround. Indeed, feature selective cells centered on the retinal position of the cue would be expected to 
stay tuned to this attended position after the cue offset, maintaining high sensitivity within its vicinity. Moreover, as 
oculomotor cells in the current study were not driven by the visual signal but by the delayed oculomotor plan, there 
was no reason for saccade landing distribution to be correlated with the observed sensitivity spread. 
 We observed that the extinction of the cue results in an increase of the attentional field size, measured just 
before a saccade. Changes in attentional field size constitute the core of an influential computational model of 
attention (Reynolds & Heeger, 2009). This model proposes to reconcile contradictory empirical findings of the 
effects of attention on visual contrast sensitivity by a normalization process which combines a stimulus drive, a 
suppressive drive and an attention field. The model predicts a contrast gain (shift of the tuning contrast function) 
when the attention field size is large relative to the attended stimulus, and a change in response gain (overall 
increase in response amplitude) when the attention field size is small relative to the attended stimulus. As we did 
not test the effect of attention on contrast, but rather on orientation, and measured only performance for test stimuli 
at threshold, we cannot distinguish here between a shift of the orientation psychometric function and an overall 
increase in sensitivity. Nevertheless, we directly measured the extent of the attention field theorized in this model 
and observed a clear increase of the attention field size after a cue’s disappearance. Our effects moreover match 
with an fMRI study on delayed endogenous attention during fixation, in which Herrmann and colleagues (2010) 
found that attention field size increases when comparing trials with placeholders to those without, during a delay 
preceding the presentation of a cued target. Future studies should make use of such a fruitful manipulation to 
further test the predication of the normalization model of attention (Reynolds & Heeger, 2009). For example, using 
our behavioral methods of attention field size combined with systematic contrast change, one could observe a 
gradual change from a response gain to a contrast gain, as a function of the cue offset time relative to the saccade 
onset. This procedure could also be applied to other sensory domains and to multi-sensory integration, which is 
also thought to be processed through a similar normalization model (Carandini & Heeger, 2012). 
  
 Using a new paradigm, we evaluated the dynamics of pre-saccadic attention field size following the 
disappearance of a cue. We found that pre-saccadic attention was mainly focused at the closest surround from 
the cue and spread to more peripheral locations as a function of the increase in delay between the cue offset and 
the saccade onset. This spread was accompanied by an overall increase in sensitivity over space that cannot be 
explained by a loss in spatial localization of the memorized location, as demonstrated through the assessment of 
saccade landing distributions. We therefore provided evidence here of a spread of attentional resources occurring 
without trade-off, that in our view can only be explained by the spatio-temporal dynamics of visual receptive field 
following the cue disappearance.  
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Method 
 
Participants 
 Twelve students of the LMU München participated in the experiment (age 19-29, 5 females, 11 right-eye 
dominant, 1 author), for a compensation of 10 Euros per hour of testing. All participants except one author (MP) 
were naive as to the purpose of the study and all had normal or corrected-to-normal vision. The experiments were 
undertaken with the understanding and written consent of all participants, and were carried out in accordance with 
the Declaration of Helsinki. The experiments were designed according to the ethical requirement specified by the 
LMU München and ethics approval for experiments involving eye tracking by the institutional review board. 
 
Setup 
 Participants sat in a quiet and dimly illuminated room, with their head positioned on a chin and fore-head 
rest. The experiment was controlled by an Apple Mac mini computer (Cupertino, CA, USA). Manual responses 
were recorded via a standard keyboard. The dominant eye’s gaze position was recorded and available online 
using an EyeLink 1000 Tower Mount (SR Research, Osgoode, ON, Canada) at a sampling rate of 1 kHz. The 
experimental software controlling the display, the response collection as well as the eye tracking was implemented 
in Matlab (The MathWorks, Natick, MA, USA), using the Psychophysics (Brainard, 1997; Pelli, 1997)} and EyeLink 
toolboxes (Cornelissen, Peters, & Palmer, 2002). Stimuli were presented at a viewing distance of 60 cm, on a 21-
in gamma-linearized LaCie Electron 21/108 CRT screen (Paris, France) with a spatial resolution of 1,024 x 768 
pixels and a vertical refresh rate of 120 Hz. 
 
Procedure 
 The study was composed of a main saccade task tested in 3 to 4 experimental sessions (on different days) 
of about 90 minutes each (including breaks). The main task was always preceded by a threshold task at the 
beginning of each experimental session. Each session was composed of 2 blocks of the threshold task followed 
by 3 to 4 blocks of the main saccade task. All participants ran a total of 20 blocks of the main saccade task. 
 
Main saccade task 
 Each trial began with participants fixating a central fixation target forming a black (~0 cd/m2) and white (88 
cd/m2) “bull’s eye” (0.4° radius) on a gray background (44 cd/m2). When the participant’s gaze was detected within 
a 3.0° radius of a virtual circle centered on the fixation target, for at least 200 ms, the trial began with a fixation 
period of 500 ms. After this period, a cue consisting of a black (~0 cd/m2) outlined circle (1.25° radius, 0.1° width) 
was presented 10° to the right or to the left of the fixation target (see Figure 1). The cue either stayed on the screen 
for a duration of 500 ms (3/4 of the trials) or remained continuously on the screen until the end of the trial (1/4 of 
the trials). Participants were instructed to move their eyes as quickly and as accurately as possible toward the 
center of the cue at the offset of the fixation target, which occurred at different times after the cue onset (see 
below). Following the fixation target offset, one discrimination target and five distractors were shown for a duration 
of 25 ms. The positions of target and distractors were randomly selected among 25 possible positions 
homogeneously covering a 10° by 10° map centered on the cue (positions located at every second intersection of 
a 7 columns by 7 rows grid, see Figure 1C). All targets were Gabor patches (frequency: 1.75 cycles per degree; 
100% contrast; random phase across trials; Gaussian envelope: 0.6°). While the distractors were vertical Gabors, 
the discrimination target was a tilted Gabor (clockwise or counter-clockwise relative to the vertical) with an angle 
adjusted in the threshold task for different distances from the fixation target (see threshold task). All targets were 
later replaced by Gaussian pixel noise masks for a duration of 25 ms (made of ~0.11°-width pixels with the same 
Gaussian envelope as the Gabors). We didn’t present any target or mask in 4% of all the trials, in order to evaluate 
the influence of our stimuli on the saccade execution (note that all other analyses are based on the discrimination 
target present trials).  
 At the end of each trial, participants reported the direction of the discrimination target using the keyboard 
(right or left arrow key) followed by a negative-feedback sound in the case of an incorrect response. On trials 
where no target was shown, participants randomly pressed one of the two response buttons, followed by a random 
feedback sound. 
 Participants completed between 2914 and 3773 trials of the main saccade task. Correct fixation resulted 
from gaze being maintained within a 3.0° radius virtual circle centered on the fixation target. Correct saccades 
resulted from saccades landing within a 4.0° radius virtual circle centered on the cue. Both criteria were checked 
online. Trials with fixation breaks or incorrect saccades were repeated at the end of each block, together with trials 
during which a saccade was initiated (crossing the virtual circle around the fixation target) within the first 50 ms or 
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ended (crossing the virtual circle around the cue) after more than 350 ms following the fixation target offset 
(participants repeated between 114 to 973 trials across all sessions). 
 
Stimuli timing 
 The saccade signal delay (fixation target offset relative to the cue onset) was selected in order to have eye 
movement onset randomly interspersed between 700 and 1600 ms after the cue onset. In order to obtain this 
temporal range we had to account for systematic changes in saccade latencies, in function of the saccade signal 
delay. Indeed, in a pilot experiment we observed that participants quickly learned the range of possible delays, 
with shorter saccade latencies observed for longer signal delays and conversely. At the end of each block, we 
determined the slope (-0.09 ± 0.01 ms) and intercept (215.84 ± 4.88 ms) of a linear regression best describing this 
relationship (for the first block, we used fixed slope and intercept values of -0.5 ms and 200 ms, respectively). The 
saccade signal was then determined on each trial by subtracting the saccade latency estimated for each trial delay 
from a randomly selected duration (between 700 and 1600 ms in steps of ~8.3 ms, a screen frame). This gave us 
signal delays ranging between 428.92 ± 6.46 ms and 1435.33 ± 2.46 ms after the cue onset (from the trials after 
data pre-processing, see below). 
 Next, in order to probe attention in the last 100 ms preceding saccades we played the discrimination and 
distractors randomly between 50 and 100 ms (in steps of 25 ms), before the saccade latency, estimated for a 
given saccade signal delay trial. This resulted in discrimination target offset time relative to the saccade onset of -
48.02 ± 1.16 ms (from the trials after data pre-processing, see below). 
 
Threshold task 
 The threshold task preceded the saccade main task at the beginning of each experimental session. This 
task made it possible to counteract possible learning effects and to adjust the baseline performance, for the 
presentation of a discrimination target at different distances from fixation, across participants. This latter point was 
particularly important as it reduced the impact of eccentricity effects (Paradiso & Carney, 1988) onto the mapping 
of attention benefits.  
 Contrary to the main task, participants were instructed to keep fixation on the fixation target, which remained 
on the screen. Also, compared to the main task, the cue could be presented at any of the 25 positions where the 
discrimination targets were shown, and it remained on the screen until the end of each trials. The discrimination 
target always followed the cue onset by 200 ms and was always presented at the cued location. With the exception 
of these differences the threshold task otherwise matched the main task. 
 The 25 possible positions of the discrimination target and cue were subdivided into 4 equiprobable groups 
of distances from the fixation target (distance 1: from ~5.3° to ~7.5°; distance 2: from ~8.5° to ~10.5°, distance 3: 
from ~11.8° to ~13.7°; distance 4: from ~15.1° to ~15.8°). Following a procedure of constant stimuli, the orientation 
of the discrimination target varied randomly across trials between five linearly spaced steps (between ±1° and 
±17° for distances 1-2; and between ±1° and ±29° for distances 3-4). 
 Participants were instructed that the cue would always indicate the discrimination target’s location in all the 
trials and were told to report its orientation (clockwise or counter-clockwise) at the end of each trial. They completed 
2 blocks of 160 trials, and correct fixation within a 3.0° radius virtual circle centered on the fixation target was 
checked online. Trials with fixation breaks were immediately discarded and repeated at the end of each block. 
 For the four main distances from the fixation target, we individually determined, for each participant and on 
each experimental session, four threshold values, corresponding to the discrimination target’s angles that would 
lead to correct discrimination on 85% of trials. To do so, we fitted four cumulative Gaussian functions to 
performance gathered in the threshold blocks. These threshold angles were used in the main task for 
discrimination targets, played at their respective distances from the fixation target. 
 
Data pre-processing 
 Before proceeding to the analysis of the behavioral results of the main task we scanned the recorded eye-
position data offline. Saccades were detected based on their velocity distribution (Engbert & Mergenthaler, 2006) 
using a moving average over twenty subsequent eye position samples. Saccade onset and offset were detected 
when the velocity exceeded and fell behind the median of the moving average by 3 SDs for at least 20 ms. We 
included trials where a correct fixation was maintained within an 3.0° radius centered on the fixation target, where 
a correct saccade started at the fixation target and landed within an 4.0° radius centered on the cue and where no 
blink occurred during the trial. Finally, only trials in which the discrimination target offset occurred in the last 150 
ms preceding saccades were included in the analysis. In total, we included 27414 trials (81.25% of the online 
selected trials, 69.48% of all trials played) of the main saccade task.  
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Behavioral data analysis 
 We designed our experiments in order to have a similar amount of trials between 4 main delays, defined by 
the offset time of the cue relative to the onset of the saccade (t). We considered the condition in which the cue 
remained continuously on the screen as our first delay (t0) and next determined three bins of trials; one when the 
cue offset occurred between 200 and 500 ms (t350), one between 500 and 800 ms (t650) and one between 800 
and 1100 ms (t950) before the saccade onset. For each participant and each of these conditions, we determined 
the sensitivity in discriminating the orientation of the discrimination target (d’): d’ = z(hit rate) - z(false alarm rate). 
To do so, we defined a clockwise response to a clockwise discrimination target (arbitrarily) as a hit and a clockwise 
response to a counter-clockwise discrimination target as a false alarm. Corrected performance of 99% and 1% 
were substituted if the observed proportion correct was equal to 100% or 0%, respectively. Performance values 
below the chance level (50% or d’ = 0) were transformed to negative d’ values. Sensitivity was computed either 
separately for each of the 25 different position of the discrimination targets or for target positions grouped in three 
main distances (Δ) from the cue location (Δ1: from 0° to ~2.4°; Δ2: from ~3.3° to ~4.7°, Δ3: from ~5.3° to ~7.1°). 
These distances were arbitrarily defined in order to increase the power of our analyses. In our analyses across 
participants we included 40.76 ± 1.26 trials per discrimination target position and time condition, giving then 176.65 
± 5.47 trials per time condition when individual positions were combined in three main distances. We also 
computed sensitivity for test positions relative to the saccade landing position. To do so, for each trial we re-
computed the distance between the observed saccade landing and the discrimination target coordinates 
individually. Later, we grouped trials into the same 3 distances as above (β), but this time from the saccade landing 
point (β1: from 0° to ~2.4°; β2: from ~3.3° to ~4.7°, β3: from ~5.3° to ~7.1°).  
 Individual sensitivity maps of target discrimination (see Figure 2A-D, middle panels) were first obtained by 
interpolating (triangulation-based natural neighbor interpolation) the missing values located every two intersections 
of the 7 columns by 7 rows grid. This was achieved by using the mean sensitivity for each participant, obtained 
over 25 positions of the discrimination target. Then the grid was rescaled (Lanczos resampling method) so as to 
obtain a finer spatial grain. These maps where then produced by drawing colored squares centered on their 
respective coordinates and following a linear color scale going from d’= 0.7 to d’=1.7. Groups of discrimination 
target sensitivity maps (see Figure 3A-D bottom panels and Figure 4E-H) were obtained by interpolating (linear 
interpolation) the mean sensitivity obtained over in the 3 different groups of main distances between the 
discrimination targets and the cue positions (Δ) or between the discrimination targets and the saccade endpoint 
position (β). These maps were then produced by drawing colored circles centered on the cue or saccade landing 
point, with a radius corresponding to their respective distances from the cue or the saccade landing point and 
following the same color scale used for the position sensitivity maps. A similar procedure was used to draw the 
threshold angle map (see Figure 1D) this time with a linear color scale going from threshold angles of 0° to 25° 
and colored circles centered on the fixation target. Saccade endpoint maps (Figure 4A-D) were obtained through 
the use of a bivariate kernel density estimator (Botev, Grotowski, & Kroese, 2010) were first normalized relative to 
the total amount of trials within a condition and later averaged across participants.  
 For statistical comparisons we drew 10,000 bootstrap samples (with replacement) from the original pair of 
compared values. We then calculated the difference of these bootstrapped samples and derived two-tailed p 
values from the distribution of these differences.  
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